Influence of high-current-density impulses on the plasticity of single crystal nickel-based super alloy CMSX-4

Докладчик

Eugen Demler

  • Организация: Leibniz Universität Hannover
  • Подразделение: Institut für Werkstoffkunde (Institute of Materials Science)
  • Город: Garbsen, Germany
  • E-Mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.


    Аннотация

    Gregory Gerstein1, Andrej Dalinger1, Alexander Epishin2, Hans Jürgen Maier1, Florian Nürnberger1

    [1] Institut für Werkstoffkunde (Institute of Materials Science), Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen, Germany

    2 Institut für Werkstoffwissenschaften und -technologien (Institute for Materials Science and Technology), Department “Metallic Materials”, Technische Universität Berlin, Ernst Reuter Platz 1, 10587 Berlin, Germany

     *Corresponding author; e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

     

    Due to the low formability of single crystal nickel-based materials, the single crystal components get into their application form during casting. After casting, a multi-stage heat treatment is conducted, the dendritic segregations are largely compensated and the γ'-precipitation phase is stabilized. This gives the component excellent creep properties at high temperatures. The material properties also depend upon the chemical composition of γ'-precipitation and γ-matrix. During the creep, the homogeneous microstructure changes and the alloying elements are distributed in the γ/γ'-phases. This results in a change in the course of the flow curve. The plasticity of metallic materials can be increased due to the electrical impulses. Using the example of single crystal nickel-based superalloy CMSX-4, current advances in the development of methods for the formation of CMSX-4 by means of electric pulses with high current densities are demonstrated. The heat-treated and creep-deformated specimens are loaded in compression and are subjected to impulses of a high current density of over 1,000 A/mm2. The test results show a significant decrease in the compressive stress after the current impulse treatment.

    Комментарии (0)

    Оставить комментарий

    Please login to leave a comment.